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1 Abstract 
 
Challenging the three underlying propositions of the EMH we analyze the disposition effect, 
overconfidence, systematic trading, and disposition prone and overconfident investors’ 
impact on the Estonian stock market. We employ Odean’s (1998a) methodology and reveal 
that investors are more prone to realize gains than losses, i.e. exhibit the disposition effect. In 
line with overconfidence hypothesis, using Odean’s (1999) method we find that investors’ 
purchases underperform their sales. We apply methods of Barber, Odean, and Zhu (2009) and 
conclude that investors’ buying decisions are correlated and persistent. Following the method 
by Goetzman and Massa (2008) we witness some evidence of disposition prone investors’ 
impact on the stock prices. Although using Statman, Thorley, and Vorkink (2006) method we 
find evidence of positive association between returns and turnover, the relationship is short 
lived and results are statistically insignificant. We come to three main implications. First, 
resting on the evidence of disposition effect and overconfidence we see a space for improving 
investor sophistication in Estonia. Second, we imply that the limits to arbitrage are an 
important issue. Market quality could be improved by providing better tools of arbitrage. 
Third, the soundness of the underlying mechanisms of the EMH is questionable. 
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2 Introduction 
Traditional finance analyses financial markets by assuming rational participants. Baltussen 

(2009) says that “rationality means that economic agents make the best choices possible for 

themselves”. Although still being the foundation of the finance, traditional view has been 

questioned by a new paradigm – behavioural finance. Behavioural finance challenges the 

rationality assumption and aims to improve the understanding of the financial markets by 

applying knowledge form psychology and sociology (Baltussen, 2009). However, 

behavioural finance does not have one unifying theory and is best defined by its objections to 

the traditional finance. The major subject of disagreement is the efficient markets hypothesis 

(EMH).  

Fama (1970), the father of the EMH, defines efficient financial market as one in which prices 

are informationally efficient – instantly reflect all relevant information. Prices represent 

fundamental value and resources are directed to their most efficient uses. Fama (1970) also 

presents empirical evidence that U.S. common stock market is efficient. The EMH rests on 

three main propositions. First, investors are assumed to be rational utility maximizing agents. 

Second, if some investors are not rational, their trades are random and cancel each other out. 

Third, even if some irrational investors trade systematically, there are rational arbitrageurs 

that eliminate deviations from fundamental value. Validity of any one of these propositions is 

sufficient for the market to be informationally efficient. 

Starting from 1980s contradicting studies emerged that challenged theoretical foundations of 

the efficient markets. All three theoretical propositions have been under attack. Black (1986) 

states that individual investors trade on noise rather than information. Kahneman and Tversky 

(1979; 1973) model investors that deviate from rationality in a consistent fashion. Finally, 

Shleifer (2000) argues that arbitrage in real life is risky and therefore limited.  

Recently, a lot of empirical evidence on the irrational investor behaviour emerged from 

individual investors’ trading patterns. These studies challenge the first proposition of the 

EMH by finding that investors’ decisions contradict the expected utility theory of Von 

Neumann and Morgenstern (1944), which states that people faced with risk apply 

probabilities with the aim of maximizing their final wealth. Odean (1999), Barber and Odean 

(2000), Grinblatt and Keloharju (2009) find that individual investors are overconfident in 

trading; they trade too much and thus are decreasing their wealth. Shefrin and Statman 

(1985), Odean (1998a) find that individual investors hold losing investments too long and sell 
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winning investments too soon, i.e. exhibit the disposition effect. Kaniel, Saar, and Titman 

(2008), Hirshleifer, Myers, and Teoh (2008) discover that individual investors sell stocks that 

announce positive news and buy stocks that announce negative news. Griffin, Harris, and 

Topaloglu (2003) and Grinblatt and Keloharju (2000) find that individual investors follow 

contrarian trading strategies with regard to past returns. Finally, many studies (Blume and 

Friend, 1975; Barber and Odean, 2000; Polkovnichenko, 2005; Goetzmann and Kumar, 

2008) find evidence of serious under-diversification of investors in the financial markets. 

Barber, Odean, and Zhu (2009) among others test the second proposition of the EMH and 

find that trading of individuals is highly correlated and persistent. Goetzmann and Massa 

(2008) and Statman, Thorley, and Vorkink (2006) tackle the third proposition by 

investigating disposition prone and overconfident investors’ (respectively) impact on stock 

market. Scholars find evidence of return and turnover movements.  

Mainstream of significant research on the individual investors’ trading patterns has been 

conducted using the U.S. discount brokerage house data. Even less research outside the U.S. 

has been conducted on the systematic trading. Finally, to our knowledge the only researches 

that investigate the influence of behavioural biases on stock market were conducted using the 

same U.S. database. The aim of this paper is to close this gap by presenting new evidence 

from a different financial market on the extent to which behavioural biases exist, are 

coordinated, and influence the financial market.  

To our knowledge, we are the first to test all three underlying mechanisms of the EMH in a 

single study using a single dataset. We are grateful to Tālis Putniņš and Estonian Central 

Securities Depository, who provided us with the unique and extensive data from the Estonian 

stock market. Having this exceptional opportunity, we perform a three step analysis. We 

research whether individual investors in the Estonian stock market suffer from behavioural 

biases of overconfidence and disposition effect, whether their actions are systematic and 

persistent, and what effects to the stock market, if any, investors suffering from these biases 

have. 

The research is valuable in several important ways. First, the new evidence would allow re-

evaluating the soundness of the three propositions on which the EMH rests. Second, it 

contributes to the evidence found in the U.S. by giving a thorough view on how a less 

developed financial market performs in terms of investor behaviour and its impact on stock 

prices. Third, such study indicates the level of investor sophistication and the potential need 



Karolis Čekauskas, Vytautas Liatukas   __      ___________________________________ 
 
 

 
 
 
 

3 

to improve it. Fourth, it sheds some light on whether market facilitators, governors or 

regulators should take any action to improve the means of arbitrage, which could minimize 

the negative impact of behavioural biases. Answers to all these questions are an important 

step in determining the path to improve the quality of financial markets. 

We chose to address overconfidence as such behaviour is strongly theoretically grounded. 

The consensus of the psychologists is that people are generally overconfident. The 

disposition effect, on the other hand is chosen as it is well documented, and is probably the 

most popular behavioural bias investigated in academia. Therefore, when examining these 

trading patterns we can employ trusted methodology and compare our results to the findings 

of other studies. 

Employing Odean’s (1998a) methodology we find that individual investors in Estonian stock 

market exhibit the disposition effect. Proportion of gains realized is 0.45, while proportion of 

losses realized is lower, equal to 0.33. Gap of 0.12 is statistically and economically 

significant. Using the method by Odean (1999) we identify that investors in Estonian stock 

market are overconfident in their ability to pick stocks and in precision of their information. 

Over 100 days’ horizon the stocks they buy underperform the stocks they sell by 0.54% even 

before accounting for transaction costs. Investigating systematic trading using Barber, Odean, 

and Zhu (2009) method we find that investors’ trading is indeed correlated and persistent. 

Correlation of buying decisions among two unrelated groups of investors is equal to 44% and 

positive correlation stretches for 10 months. We also borrow Goetzman and Massa (2008) 

and Statman, Thorley, and Vorkink (2006) methods to check stock market impact of 

disposition effect and overconfidence. We find some evidence that investors suffering from 

disposition effect have an impact on the Estonian stock market. Investigating overconfident 

investors’ impact on the stock market we witness some evidence of positive association 

between returns and trading volume. However, the relationship is short lived and statistically 

insignificant, so we do not draw any conclusions.  

We see three main implications of our study. First, we imply that there is space for improving 

investor sophistication. Second, market quality could be increased by providing investors 

with better tools of arbitrage. Third, the validity of the underlying mechanisms of the EMH is 

questionable. 

The rest of the paper is structured as follows: section II reviews the literature about the 

disposition effect, overconfidence, systematic trading, and stock market impact of the 
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aforementioned behavioural biases, section III explains methodology used in the three step 

analysis, section IV presents findings, section V provides implications, and section VI 

concludes.      

3 Literature review 
We first review the literature on the two behavioural biases we are interested in, namely, the 

disposition effect and overconfidence. We then review the evidence on aggregate systematic 

trading of individual investors. Finally, we present literature that investigates the stock 

market impact of behaviourally biased investors. 

Trading patterns 

Disposition effect 

Kahneman and Tversky (1979) in their seminal paper Prospect theory: An analysis of 

decision under risk challenge the expected utility theory of Von Neumann and Morgenstern 

(1944). They claim that basic assumptions of the theory are violated. People tend to 

underweight outcomes with miniscule probabilities as compared to outcomes with certainty. 

This certainty effect results in risk averse choices involving sure gains, and risk seeking 

choices involving certain losses. They also claim that people have inconsistent preferences. 

Authors presented prospect theory as an alternative theory to describe the decisions between 

alternatives involving risk. In their framework value is assigned to gains and losses relative to 

some reference point as compared to final wealth in expected utility theory. Probabilities are 

also replaced by decision weights. The value function takes S-shape and allows loss aversion 

– function is concave for gains, but convex and steeper for losses. Shefrin and Statman 

(1985) apply this intuition to the financial markets and model investors’ tendency to sell and 

realize gains of winning stocks too quickly and hold on to losing stocks too long. They name 

such behaviour the disposition effect. 

Odean (1998a) empirically tests the disposition effect in the U.S. stock market. He obtains a 

random sample of 10,000 accounts from discount brokerage house for the period 1987-1993. 

He compares the ratio of realized gains to total gains (PGR) with ratio of realized losses to 

total losses (PLR). If PGR ratio is higher than PLR it means that investors sell winners too 

soon and hold on to losers too long. When testing the difference in PGR and PLR on 

aggregate across all investors, Odean (1998a) finds that the difference is equal to 0.21 and 

hypothesis that PLR is equal or higher than PGR is strongly rejected with t-statistic greater 
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than 35. The result is robust for testing the number of shares traded instead of simply 

checking for amount of trades as well as for different partitions of the sample based on period 

or trading frequency. Odean (1998a) also presents a rough estimation of the costs of the 

disposition effect – if a person chooses to sell a winner instead of a loser he will have 4.4 

percent lower return in one year’s horizon. The costs might increase even more if the person 

defers the sale of a loser for a longer period. 

There are other studies that investigate the disposition effect. Talpsepp (2010) investigates 

investor trading characteristics, the disposition effect and its relation to performance in 

Estonia. He finds that the disposition effect is associated with lower portfolio returns. 

Grinblatt and Keloharju (2000) find evidence of disposition effect using Finnish data. Chen, 

Kim, Nofsinger, and Rui (2007) investigate brokerage account data from China. They find 

that investors in China suffer from disposition effect and that the magnitude of the bias is 

higher than in the U.S. Odean (1999) and Barber and Odean (2000, 2001, 2002), while 

mainly interested in overconfidence, still repeatedly find evidence of the disposition effect. 

Weber and Camerer (1998) make an experiment in order to determine whether investors 

exhibit the disposition effect. Authors find that investors tend to keep losing and sell wining 

stocks. Weber and Zuchel (2001) also make an experiment in order to study whether prior 

outcomes affect risky choice. Authors find increased risky behaviour following a loss, which 

conform to the disposition effect. Fernandes, Pena, and Tabak (2008) perform the same 

experiment across countries and again find that prior outcomes affect risky choices in the 

form of loss aversion. Oehler, Heilmann, Volker, and Oberlande (2002) investigate 490 

investors in 3 stock markets and conclude that majority of them demonstrate the disposition 

effect.  

Tax-motivated selling is often contrasted to the disposition effect. Constantinides (1984) 

shows that investors should increase their tax motivated selling throughout the year and it 

should reach peak in December. Investors can gain from selling their securities at loss, in that 

way reducing their profit and thus taxes and re-buying them at the beginning of the next year 

to keep the desired compositions of their portfolios. Tax motivated selling should induce 

investors to realize losses and consequently mitigate the disposition effect. Odean (1998a) 

discovers that tax-motivated selling is indeed reducing the disposition effect and December is 

the only month during the year when PGR/PLR (a comparable alternative to PGR-PLR) is 
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smaller than 1 (0.85). He confirms that the reluctance to realise losses decreases consistently 

throughout the year and reaches the bottom in December.  

There are two main explanations of the disposition effect in line with the rational behaviour. 

First, the disposition effect might be caused by portfolio rebalancing. Second, it could be 

justified by investors’ expectations of mean reversion. Odean (1998a) finds that none of these 

explanations are plausible. He concludes that traders are systematically mistaken about their 

beliefs. 

Overconfidence 

Psychologist Jarome D. Frank (1935) showed that most people are generally overconfident 

about their abilities. Scholars investigating subjective probabilities find that people tend to 

overestimate the precision of their knowledge (Alpert and Raiffa, 1982; Fischhoff, Slovic, 

and Lichtenstein, 1977). Such overconfidence applies to many professional fields, not only 

economics (Barber and Odean, 2001). It is greatest for difficult tasks, and stock selection is 

exactly of such type. 

Odean (1998b) develops overconfidence model in financial securities market. Investors 

overestimate their ability to asses value of security more precisely than others. Individuals 

believe in their own valuation, which in turn causes differences in opinion that motivate 

trading (Varian, 1989; Harris and Raviv, 1993). However, individuals should only trade if 

doing so increases their expected utility (Grossman and Stiglitz, 1980). Odean (1998b) finds 

that the more investor is overconfident the more he trades, and the lower his expected utility 

is. This is because investors possess unrealistic beliefs about how precise the returns can be 

estimated and spend too much resources on gathering information. Overconfident investors 

also hold riskier portfolios than rational investors. Author notes that there are exceptions to 

the rule, and some investors do not exhibit overconfidence. For example, Annaert, Heyman, 

Vanmaele, and Van Osselaer (2008) find that trades of mutual funds do not erode 

performance, thus do not exhibit overconfidence. 

Note that Odean (1998b) models overconfidence about the precision of assessing information 

signals. Therefore, the worst expected outcome for such investor is zero gross profit and 

expected net loss equal to transaction costs. These models do not take into account systematic 

misinterpretation of information. Barber and Odean (2005) state that in addition to investors 

being overconfidence about the precision of their information they are also overconfident in 



Karolis Čekauskas, Vytautas Liatukas   __      ___________________________________ 
 
 

 
 
 
 

7 

their ability to interpret information. Investors, being overconfident in the interpretation of 

information, hold mistaken beliefs about the mean, instead of (or in addition to) the precision 

of the probabilistic distribution of their information. In this case, investors on average incur 

losses beyond transaction costs. 

Odean (1999), using the U.S. discount brokerage data, finds that trading volume is excessive 

for individual investors. Author tests whether securities investors buy outperform securities 

they sell by at least the amount to cover transaction costs. Strikingly, Odean (1999) finds that 

individual investors’ buys underperform sells by as much as 3.3% in one year after the trade 

even before accounting for transaction costs. Author concludes that investors are 

overconfident in their ability to interpret information, not only about the precision of their 

information signals.  

Barber and Odean (2000) studies the same phenomenon – whether individual investors trade 

excessively; however, they employ a different methodology. Authors take the same data from 

the discount brokerage firm, but they analyze the aggregate performance of all stocks held by 

individuals. Contrary to Odean (1999) they are not only able to tell that investors trade too 

much, but also can analyze how individual investors perform on aggregate. Their empirical 

evidence supports the view that overconfidence causes excessive trading. Those that trade the 

most frequently earn returns of 11.4% compared to the market returns of 17.9%. Those who 

trade infrequently earn 18.5% return. Authors also find that households underperform all 

benchmarks after accounting for transaction costs. Households earn returns before accounting 

for trading costs that are approximately equal to the market index. 

There are other studies investigating overconfidence. Biais, Hilton, and Mazurier (2005) 

perform an experiment with 245 participants and find that investors are overconfident in the 

precision of their information and that such overconfidence reduces trading performance. 

Daeves, Luders, and Luo (2009) perform another experiment and analyze whether 

overconfidence induce more trading and find it to be true at the level of individuals and at the 

market level. Barber and Odean (2001) test overconfidence by partitioning investors by 

gender. Using Barber and Odean (2000) method, they find that men trade 45% more than 

women and trading reduces men’s net returns by 2.65 p.p. as opposed to 1.72 p.p. for women. 

Barber and Odean (2002) investigate individual investors who switch to the internet trading. 

Authors hypothesize that because of access to more information and higher degree of control 

over their account investors should become more overconfident. They find that after 
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switching to the internet trading investors trade more actively and perform worse. Hsu and 

Shiu (2010) investigate the investment performance of 6993 investors in IPO auctions in 

Taiwan stock market. They find that frequent bidders have lower returns and conclude that 

investors suffer from overconfidence. 

There are several standard explanations of overconfidence. Investors could trade for liquidity 

needs, in order to move to less or more risky investments, to realize tax losses, or to 

rebalance. Odean (1999) controls for these effects and still finds statistically significant effect 

of investors’ overconfidence. Investors perform even worse – buys underperform sells by 

5.8% over one year’s horizon. Barber and Odean (2000) also check whether trading is caused 

by rational expectations, and find that liquidity, risk based rebalancing, and taxes can only 

explain some of the trading activity, but are unable to explain the annual turnover of 250% 

for the most frequently trading households. 

Systematic trading 

For the deviations from rational investor behaviour to have an effect on stock prices they 

have to be systematic and there must be limits to arbitrage. We start by reviewing the former 

condition here. 

If investors are irrational in unsystematic way, their actions could offset each other (Fama, 

1970). A recent approach to examine whether investors trade systematically was undertaken 

by Barber, Odean, and Zhu (2009). Resting on Shleifer’s (2000) argument that “investor 

sentiment reflects common judgment errors made by substantial number of investors, rather 

than uncorrelated random mistakes”, authors empirically test whether trading of individuals is 

correlated and persistent. They examine 66,000 investors at a discount broker and 665,000 

investors at a retail broker. They find mean correlation of 73% between two randomly 

assigned investor groups and conclude that by knowing what one group of investors is doing 

you can also know much about the unrelated second group. Authors also find that the 

observed distribution of specific stock’s proportion of trades that are purchases has fatter tails 

compared to the expected distribution when decisions to buy versus sell a specific stock are 

not correlated. This implies that the decisions of individual investors to buy (sell) a particular 

stock are correlated. Additionally, Barber, Odean, and Zhu (2009) test whether the correlation 

of individual investors’ decisions is persistent. They find that stocks that are bought by 

individuals in one month are a lot more likely to be bought in the following months. 

Persistence is evident beyond one year, but gradually disappears. 
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However, as noted by Jackson (2003), the latter paper can be misleading to some extent. This 

is because authors investigate correlation within a single broker, so investment decisions can 

be affected by common advice or networks. Jackson (2003) takes a different approach and 

investigates 47 full-service and 9 internet brokerage firms in Australia. He tests whether 

actions of investors are similar between the independent brokerage firms. Author finds that 

the cross-sectional correlation for weekly net flows into stocks for internet brokerage firms is 

44% and for full-service firms – 24%. Nevertheless correlation for full-service firms is a lot 

lower, it is still strikingly robust. Author finds that correlation for every single unique pair of 

the full-service firms is positive. 

Another remarkable work by Dorn, Huberman, and Sengmueller (2008) investigates 

systematic trading in Germany. Authors examine different types of retail trades for the three 

largest German discount brokers. They distinguish between speculative and other trades, and 

between limit orders and market orders. As suggested by some scholars, authors find that 

limit orders are responsible for some of the correlation that arise mechanically when price 

jump executes sell orders that could be set long time apart and artificially inflates correlation. 

However, authors conclude that limit orders and other mechanical reasons explain only a 

fraction of the trade co-movement. Taking speculative and non-speculative trades apart 

allows authors to tackle another problem. Non-speculative trades are often liquidity trades 

that could execute together and overstate level of systematic trading that should only reflect 

active traders. They indeed find that non speculative trades are correlated. This is not 

surprising as such trades are usually coordinated implicitly, for example, through automated 

investment plans. What is surprising, though, is that correlation among speculative trades is 

considerably higher than among the non-speculative trades. Authors conclude that retail 

investors trade systematically. 

Kumar (2009) using the same database as Barber, Odean, and Zhu (2009) finds that investors 

systematically shift between different style portfolios, such as value versus growth. Kumar 

and Lee (2006) using the U.S. discount brokerage data find that investors are systematic in 

their money movements in and out of  the stock markets. 

Stock market impact 

Even if one proves that individual investors exhibit the disposition effect and overconfidence 

and that investor behaviour is systematic, she still cannot make inferences about stock market 

impact and informational efficiency. For the irrational investors to have an impact on prices 
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another vital condition must be satisfied – rational investors must be unable to return prices to 

the fundamentals. Many supporters of the EMH including Fama (1965) and Friedman (1953) 

argue that even if a group of investors in market is irrational and trade systematically, 

markets can still be efficient. If some investors are rational and bet against the market, 

irrational investors’ impact on prices is eliminated. Therefore, market remains efficient and 

prices fully reflect all available information. 

Arguments that there are theoretical limits to arbitrage have been proposed by many scholars. 

Shleifer (2000) states that real life arbitrage is risky. He argues that close substitutes for 

securities in many instances do not exist and arbitrageur has no riskless hedge. The same 

holds if short selling is not feasible as it is the case in Estonian stock market (although short 

selling is legal, there are no standardized mechanisms through which to perform it so in 

practise it rarely happens). Arbitrageur can only sell or buy the affected stock and hope that 

there are no surprises. Arbitrage is no longer even close to being riskless. If arbitrageur is risk 

averse, she will lose interest in such participation. Shleifer (2000) further argues that even if 

substitutes exist, they are usually not perfect. Therefore, arbitrageur bears some idiosyncratic 

risk that news will be surprisingly good for the security she is short and vice versa for the 

security she is long. Such trading is called ‘risk arbitrage’ and it is built on statistical 

likelihood rather than on unconditional profit. De Long, Shleifer, Summers, Waldmann 

(1990) finds another risk – ‘noise trader risk’. According to them, arbitrageur faces risk that 

the price divergence can get much worse before eventually converging to the fundamental 

value. So arbitrageur might be unable to maintain his position through initial losses and might 

need to liquidate it. 

Scholars found many anomalies that are not consistent with Fama’s third proposition of the 

EMH. Extreme losers performing better than extreme winners, stock price momentum 

explaining returns, January effect, small firm effect, B/M effect, price movements to non-

information, and etc. However, most of them were built on weak theoretical foundations and 

therefore were open to critique. Improper risk adjustment, data mining, sample selection 

biases, trading costs, and taxes were among the top objections to such literature. 

Rather than testing the channel of limits of arbitrage or searching for anomalies, it is more 

meaningful to detect a direct link between irrational investor behaviour and security prices. 

Very few such researches have yet been conducted. A recent attempt was undertaken by 

Goetzmann and Massa (2008). Authors base their work on the theoretical implications of 
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Grinblatt and Han (2005) that have created a model of equilibrium prices under disposition 

effect. According to Grinblatt and Han (2005), because of disposition prone investors, a stock 

that has good news has excess selling pressure compared to the stock that has bad news. Such 

perturbation generates price under-reaction to public information. Stock price diverges from 

its fundamental value. Because of investor heterogeneity, trades that represent the disposition 

effect occur and reference points start to change. Price in the next trading period reverts 

towards fundamentals. Their model is unique as it states that lagged capital gains or losses are 

enough to forecast stock returns. So, presence of investors that exhibit the disposition effect 

decreases price fluctuations. The higher fraction of disposition prone investors there are in the 

market, the less responsive stock prices are to shocks in fundamentals.  

Goetzmann and Massa (2008) perform regression analysis and constantly find negative 

statistically and economically significant relationship between disposition proxy and stock 

returns, volatility, turnover, and volume. This confirms that those stocks that have more 

disposition prone investors as shareholders are less sensitive to fundamental shocks. 

Additionally, authors find that disposition effect is not just stock specific but also aggregates 

at the market level. 

Statman, Thorley, and Vorkink (2006) examine stock market reaction to overconfidence. 

They rest on theoretical implications of Odean (1998b) and Gervais and Odean (2001) that 

develop a multi period model where overconfidence increases as investors attribute high 

returns to their skills rather than to random walk of security prices. These models conclude 

that higher market returns lead to higher subsequent volume. Statman, Thorley, and Vorkink 

(2006) test this and find strong relation which confirms theoretical predictions – higher 

market returns predict higher turnover. Findings are also economically significant as market 

return of 7% compared to -5% in a given month gives additional month’s turnover  over the 

following 6 months. Authors also find that stock returns can be predicted using past trading 

volume. Results are consistent with Daniel, Hirshleifer, and Subrahmanyam (1998). Thus if 

investor overconfidence increases turnover, and trading volume predicts security returns, 

overconfident investors indeed have a price impact. 

This is not the only evidence on the market impact of investor decisions. Warther (1995) 

examines relation between aggregate security returns and fund flows. He finds some evidence 

that fund flows predict subsequent returns. Edelen and Warner (2001) examine the link 

between returns and aggregate flow into the U.S.A equity funds and find that daily relation is 
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positive and significant. Goetzmann and Massa (2003) assess the relation between index fund 

flows and market returns. They find a strong contemporaneous correlation. 

4 Methodology 
Data 

Data for this study were provided by Tālis Putniņš, who obtained the dataset from Estonian 

Central Securities Depository. There are more than 40,000 accounts with trading information 

from January, 2004 to October, 2010. The data consist of four major parts. First part of the 

data describes personal characteristics of investors. It indicates account number, gender, 

foreign, date of birth, and investor type variables. Investor’s type takes four values: 

individual, fund, government, and institution. As the focus of this paper is individual 

investors, we filter out other groups. Second part of the data describes portfolio positions of 

investors at the end of every trading day in our sample. It shows every investor’s holdings in 

every stock expressed in EUR. Third and the largest part of the data consist of every trade 

that took place during the sample period in Estonian stock market. Account number, stock, 

price, quantity, trade direction (buy or sell), and settlement date are shown. There are over 

990,000 records. Fourth part of the data consists of files with daily returns of every stock in 

Estonian stock market from NASDAQ OMX Baltic. Stock returns are adjusted for dividends 

and stock splits. 

We calculate trading costs firstly by calculating realized spread. It is equal to:  
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correlation of investors’ trading we employ some of the methods proposed by Barber, Odean, 

and Zhu (2009). To check the disposition prone investors’ impact on prices we use a method 

proposed by Goetzmann and Massa (2008). Finally, in order to test stock market reaction to 

overconfidence, we employ Statman, Thorley, and Vorkink (2006) methodology. 

Disposition effect 

The disposition effect is measured by checking the frequencies with which investors sell 

losers and winners compared to their possibilities to sell each. Consistent with Odean 

(1998a), we construct portfolios for each account on each day for which the purchase price 

and date are available. Aside from those stocks that are purchased before January 1, 2004, we 

have data on prices and dates of trade for each account. Our rather unique dataset provides us 

with the possibility to research each trade undertaken in the Estonian stock market. Odean 

(1998a) does not have such possibility. In other words, we have the whole population of 

investors, while Odean (1998a) only has a subset of them. This helps to avoid possible 

representation bias. Likewise Odean (1998a) we do not possess the entire universe of stocks 

an investor has in her portfolio. We only have the data for the trades after the start of 2004. 

Odean (1998a) points out that this should not be a problem as constructed portfolios are 

highly unlikely to be biased towards stocks with different magnitude of disposition effect. 

For each day when a sale takes place in a portfolio with at least two stocks (so that investor is 

not completely liquidating his portfolio) the selling price of each stock is compared to the 

average purchase price (reference point). Average purchase price is the average euro amount 

paid per one share in multiple transactions to obtain a number of shares held at the date of 

interest. The price is weighted by the number of shares bought in each transaction. There are 

number of proxies for reference point including the last purchase price, the highest purchase 

price, etc. Odean (1998a) uses the average price as the base case. He also employs other 

proxies but this does not yield any significant differences. Therefore, based on the evidence 

that the choice of the reference point should not alter results we use the average purchase 

price. Purchase and sale prices are adjusted for commissions, to capture their effect on capital 

gains and losses. This is important when contrasting the disposition effect with tax-motivated 

selling (Odean, 1998a). By comparing the sale price with the reference point (average price) 

we identify whether the stock was sold for a gain or for a loss. Stocks that are not sold and 

are in the portfolio at the beginning of a particular day when a sale takes place, are counted as 

a paper, or unrealised, gain, loss or neither. If both day’s high and low prices for a security 
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are higher than its average purchase price, the unsold stock is counted as a paper gain; if both 

of these prices are lower than the reference point stock is counted as a paper loss; while in 

other cases it is considered as neither a gain nor a loss. Days with no sales are excluded. The 

final step before testing the disposition effect is to construct two ratios: 

PGR (Proportion of Gains Realized) = Realized Gains / (Realized Gains + Paper Gains) 

PLR (Proportion of Losses Realized) = Realized Losses / (Realized Losses + Paper Losses) 

Each realized or paper gain (loss) is treated as an independent observation and aggregated 

across investors. Such approach requires assumption of independence both at account and 

transaction level. After aggregation, the ratios are compared to see whether there is statistical 

and economic significance in the difference. PGR ratio being higher than PLR ratio implies 

existence of the disposition effect. As an alternative, following Odean (1998a), we also 

measure the disposition effect by first calculating the difference between PGR and PLR for 

each investor, subsequently aggregating the measures across the accounts, and finally 

comparing the measures to test the presence of disposition effect. In this case we do not need 

to assume independence of each observation. We only assume that ratios in one account are 

independent of those in other accounts. For robustness we also calculate the PGR and PLR 

measures on number of shares traded and euro value of shares traded basis instead of number 

of trades. Following Odean (1998a), we also make analysis on monthly basis to investigate, 

whether the disposition effect is reduced by tax-motivated selling getting closer to the year-

end. 

Odean (1998a) method is not the only one for testing disposition effect and scholars have 

pointed some limitations of it. Grinblatt and Keloharju (2001) use logit regression 

specification to estimate the decision to sell or hold a stock. They state that Odean (1998a) is 

not able to distinguish the reasons for the observed disposition effect – whether it is due to 

capital gains (losses) or investors correctly or incorrectly believing that contrarian trading 

strategies will be profitable. Dhar and Zhu (2006) further argue that Odean does not check for 

the differences in the disposition effect across individuals and possible disposition effect 

explanations based on investor characteristics. Feng and Seasholes (2005) also note that the 

disposition effect might be related to the demographic variables of individual investors, 

which is not tested by Odean (1998a). Moreover, they argue that inferences drawn using 

Odean (1998a) method can be incorrect if capital gains or losses vary over time – for 

example, stock experiences a sudden gain that is reverted only after a long time period.  
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Albeit there are drawbacks when using the method for identifying the reasons of the 

disposition effect, method is perfectly usable for the purpose of documenting the disposition 

effect on the investor base as a whole. This method has strong logic, long withstanding 

foundations, and has been widely used in academia. Barberis and Wei (2009), Locke and 

Mann (2005), Strobl (2003) and Frazzini (2006), to name a few, use Odean’s (1998a) or a 

comparable method in their papers. 

Overconfidence 

Overconfidence is measured by comparing investor purchases’ returns to sales’ returns 

(Odean, 1999). We take return horizons of 100 days (5 months) and 20 days (one month). 

100 days is the average stock holding period in our sample while 20 day is the time period in 

which investors on average turn over their portfolio in our dataset. In order to calculate 

average returns for securities bought/sold in investor accounts over time periods T (20, 100 

days) subsequent the purchase/sale, we mark each transaction with index i = 1 to N. Each 

transaction has a security j, and a date, t. The average return for securities bought/sold over T 

trading days after the purchase/sale is equal to: 
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different investors. Because of the violation of independence condition conventional 

statistical tests are not applicable. However, there is a solution to this problem. Following 

methodology by Brock, Lakonishok, and LeBaron (1992) and Ikenberry, Lakonishok, and 

Vermaelen (1995), Odean (1999) uses bootstrapping for statistical significance tests. 

Following his suggestion we also perform statistical significance tests by bootstrapping 

empirical distribution for differences in returns to bought and sold stocks. Another pitfall of 

the methodology by Odean (1999) is spotted by Barber and Odean (2000). They argue that 

Odean (1999) method makes it impossible to analyze aggregate performance of all stocks 

held by individuals and thus he is unable to draw conclusions of how well individual 

investors perform on aggregate. As the purpose of our study is to test whether investors in 

Estonia suffer from overconfidence bias, it is enough to check whether investors trade 

excessively. This argument is also noted by Barber and Odean (2000). Same or similar 

method is replicated, among many others, by Annaertm Heyman, Vanmaele, and Van 

Osselaer (2008), Linnainmaa (2010), Seru, Shumway, and Stoffman (2010). 

Correlation of investors’ trading 

In accordance to Barber, Odean, and Zhu (2009) we randomly divide our sample of investor 

accounts into two groups. In each month, we calculate the buying intensity, which is simply 

the ratio of buys to all trades, for every stock for the two groups. We then calculate the 

correlation of the buying intensity between the stocks of the two groups in each month. This 

gives us 82 months’ time-series of correlations. We then average the correlations over time. If 

investors’ trading was not systematic, we would expect the mean correlation between the two 

groups to be equal to zero. We perform statistical test based on standard deviation of 

correlation time-series. 

We also test the persistence of buying intensity’s correlation over time. We do this again by 

calculating buying intensity each month across stocks for the two groups, and then 

calculating the correlation of buying intensity each month between the two groups. This 

yields the same 82 months’ time-series as in the method above. We then calculate mean 

correlations for lag lengths (L) from one month to two years. In particular, we check if 

correlation of buying intensity in month t and month t+L is zero for group one at both 

horizons, group two at both horizons, group one in month t and group two in month t+L, and 

group two in month t and group one in month t+L. 
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We follow Barber, Odean, and Zhu (2009) and calculate correlation for disposition prone 

investors. Using first half of the sample (3 years) we identify disposition prone investors 

according to Odean(1998a) and calculate correlation among those investors that have PGR 

larger than PLR using the other half of the sample. By identifying disposition investors out of 

sample, we avoid the problem of identifying relationship between the disposition effect 

spuriously. We do the same for overconfident investors that are defined as those that have 

negative 100 days buy minus sell returns before accounting for transaction costs in the first 

half of our sample. 

Disposition impact on prices 

First of all, following Goetzmann and Massa (2008) we construct the disposition proxy. This 

variable measures the proportion of trades originated by disposition prone investors. We 

define disposition prone investors using out of sample method. This is done by identifying 

disposition prone investors in one month and then tracking their behaviour in the following 

month. Disposition investors are identified using the same Odean’s (1998a) methodology we 

use to measure the disposition effect. We calculate PGR and PLR variables and define 

disposition prone investor as one, whose PGR is higher than PLR. In the following month, 

each day, we calculate the net trades originated by disposition prone and the other investors, 

and construct the disposition proxy. It is calculated for each stock and is equal to the net 

trades of the disposition prone investors minus the net trades of the rest of the market, 

standardized by total trades. The higher the disposition proxy is, the bigger proportion of 

disposition prone investors there are among shareholders. According to the theory, the higher 

fraction of disposition prone investors there are in the market, the less responsive stock price 

is to shocks in fundamentals. Thus, we anticipate the disposition proxy to be negatively 

correlated with stock volatility, returns, turnover, and volume. 

Replicating Goetzmann and Massa (2008) approach we investigate the impact of disposition 

effect on stock volatility, return, volume and turnover using the following regression 

functional form: 
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HML, SMB, riskless rate, company size, market volume, stock price, stock return, stock 

volume, and stock volatility. We use the same set of control variables, except for HML and 

SMB. We find this specification virtually the same as authors themselves do not focus on 

control variables. There is no real reason to believe that our disposition proxy is correlated 

with HML or SMB. We use two specifications depending on whether stock price is included 

in the set of control variables or not. Goetzmann and Massa (2008) note the problem of 

reverse causality using returns, volume, and turnover as dependent variables. Authors find 

that volatility should not suffer from reverse causality as theoretically disposition prone 

investors should not be more willing to sell when volatility is high and buy when volatility is 

low. 

Following Goetzmann and Massa (2008) we use range based measure of volatility. It is 

measured as log range between the highest price of the day minus the lowest price of the day. 

Stock returns are simply the daily change in closing prices. Stock turnover is measured as log 

number of shares traded in a particular day divided by the number of shares outstanding. As 

we were unable to acquire the number of shares outstanding at daily frequency, we use the 

end of the period measure as a proxy. Stock volume is simply log number of shares traded in 

a particular day times closing stock price. We measure market returns as the daily change in 

the market index. Company size is measured as the end of the day market capitalization. 

Overall market volume is simply the log number of shares traded in the Estonian stock 

market each day. Daily 6 months TALIBOR is taken as a proxy for riskless rate. 

Stock market reaction to overconfidence 

Following Statman, Thorley, and Vorkink (2006) we first estimate the relationship for weekly 

market turnover and weekly market returns and do the same for every stock in the market 

separately. For the market-wide level analysis we use the following vector auto regression 

(VAR) specification: 
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(2006) we also include these exogenous variables: weekly market volatility estimate, as 

specified in the study by French, Schwert, and Stambaugh (1987) 1, and weekly returns 

dispersion, measured as weekly cross-sectional standard deviation of stock returns. 

According to models by Odean (1998b) and Gervais and Odean (2001) we should expect 

positive coefficients on lagged returns as greater overconfidence should induce more trading 

and increase overall market volume.  

The observed increase in volume due to positive returns would be consistent not only with 

overconfidence, but also with the disposition effect as investors enjoy realizing gains due to 

rising security prices. This is due to the fact that disposition investors are acting to the 

changes in the returns of a particular stock. When stock returns are rising/falling disposition 

prone investors are more likely to sell/keep the stock. This behaviour aggregates to the 

market level. Stock level analysis help to disentangle the effect of overconfidence. Market 

returns cannot influence decisions of the disposition prone investors to keep or sell a 

particular stock. For such analysis we adjust the VAR to be trivariate and employ logarithm 

of stock volume, market returns and security returns as endogenous variables. Stock 

volatility, measured in the same way as market volatility, is used as an exogenous control 

variable. If overconfidence plays a role in affecting volume, we should expect a positive and 

significant relationship between lagged market returns and stock trading volume. As there is 

no established definition of the length of the relationship between turnover and returns, we 

use Schwartz Information Criteria (SIC) to choose the lag lengths in vector auto regressions. 

This gives us 4 lags. Moreover, for robustness purposes we continue to use the same lag 

length (10) as Statman, Thorley, and Vorkink (2006). We use 2 lags of exogenous variables.  

In addition to the market level VARs we use the associated impulse response functions 

(IRFs). This allows us to identify the relationship of the endogenous variables over time 

(Hamilton 1994). By using IRFs we are able to trace the effect through the dynamic structure 

of vector auto regression. It shows how an exogenous shock in one residual of a magnitude of 

one standard deviation affects the endogenous variables. To correct for possible risk of 

contemporaneous correlation in residuals, instead of simple IRFs we employ the 

orthogonalized impulse response functions (OIRFs). 

Statman, Thorley, and Vorkink (2006) use 40 years of data which gives them 480 months of 

time series. We have less than 7 years or 82 months. For this reason, we perform analysis on 
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weekly basis and have 328 periods of the time series. While daily frequency might be not 

appropriate in such study as people mentally process information about increasing market 

returns and become overconfident slower than that, weakly returns should not have such 

problem. 

The methodology by Statman, Thorley, and Vorkink (2006) is further used in studies by 

Zaiane and Abaoub (2009), Chuang and Lee (2006), and Glaser and Weber (2007). No 

considerable drawbacks were spotted. 

5 Results 
We present results according to the three steps. We first look at the results of the disposition 

effect and overconfidence. We do it separately as it is the most significant step of our 

analysis. Then we present evidence of systematic trading among the individual investors. 

Finally, we look at the results of the disposition prone and overconfident investors’ impact on 

stock prices. 

Trading patterns 

Disposition effect 

We find that given the opportunity to sell a stock investors in the Estonian stock market are 

less willing to get rid of the stocks that have lost value as compared to the stocks that have 

gained value. Final dataset contains 2880 individual investors for whom we are able to 

calculate PGR and PLR measures. Results are presented in Table 1. Panel A shows that 

proportion of gains realized is equal to 0.45 while only one third (0.33) of all losses are 

realized. The difference between PGR and PLR proportions is equal to 0.12 and provides 

strong evidence for the disposition effect. The hypothesis that PGR is higher than PLR is 

rejected with t-statistic of 39. The numerical value of the disposition effect (0.12) in Estonian 

dataset is more than twice as high as in the U.S. dataset, where PGR – PLR is equal to 0.05. 

One explanation for such difference could be that Estonia being emerging market consists of 

less sophisticated investors. Studies by Feng and Seasholes (2005), Dhar and Zhu (2006), and 

Seru, Shumway, and Stoffman (2010) suggest that disposition effect can be reduced by 

investors learning by trading.  While U.S. investors have been trading stocks for a couple of 

centuries, Estonian stock market counts only its second decade. Although investors in Estonia 

are more prone to the disposition effect, both PGR and PLR are around 3.5 times higher in 

Estonia than in the U.S. (0.15 and 0.10 respectively). 



Karolis Čekauskas, Vytautas Liatukas   __      ___________________________________ 
 
 

 
 
 
 

21 

However, all the difference disappears when instead of assuming independence both at 

account and transaction level we only assume it at account level (Table 1, Panel B). Mean 

PGR and PLR are 0.59 and 0.43 respectively for the Estonian data compared to 0.57 and 0.36 

for the U.S. data. Numbers imply that the disposition is higher for the U.S. investors (0.21, t-

statistic 19) as compared to Estonia‘s (0.16, t-statistic 17). 

We always calculate the realized and paper gains (losses) on stock basis, measuring the actual 

and potential trades. Thus, any trade size counts equally. To check the robustness of our 

findings we also calculate the PGR and PLR measures in terms of actual number of shares 

traded and potential number of shares traded (Table 1, Panel C and D). Findings remain 

practically the same, as the average PGR and PLR are 0.56 and 0.40 implying a significant 

difference of 0.16 (t-statistic 16). We also tackle another possible issue. If investors would be 

more prone to realize small gains than large losses, it might be that proportions of gain (loss) 

values realized are actually smaller than reported on trade basis or on number of share basis. 

Calculating PGR and PLR on euro value basis yields a virtually unchanged difference of 

PGR-PLR (0.17, t-statistic 14). We conclude that the disposition effect is indeed present in 

the Estonian stock market, is as visible as in the U.S. stock market, and is robust to various 

methods of calculation. 

 

Table 1.Disposition effect in the Estonian stock market. Table shows the propensity to realise gains and 
propensity to realize losses. PGR-PLR measures the disposition effect. Proportion of gains (losses) realized is 

Panel A: Assuming independence both at account and transaction level

Proportion of Gains Realized 0.45 Proportion of Gains Realized 0.42
Proportion of Losses Realized 0.33 Proportion of Losses Realized 0.30
PGR-PLR 0.12 PGR-PLR 0.12
(t-statistic) (39) (t-statistic) (28)

Panel B: Assuming independence at account level Panel F: The crisis period (03 2007 - 07 2009)

Proportion of Gains Realized 0.59 Proportion of Gains Realized 0.54
Proportion of Losses Realized 0.43 Proportion of Losses Realized 0.36
PGR-PLR 0.16 PGR-PLR 0.18
(t-statistic) (17) (t-statistic) (34)

Panel G: December

Proportion of Gains Realized 0.56 Proportion of Gains Realized 0.44
Proportion of Losses Realized 0.40 Proportion of Losses Realized 0.35
PGR-PLR 0.16 PGR-PLR 0.09
(t-statistic) (16) (t-statistic) (7)

Panel D: Euro value of shares traded instead of a trade Panel H: January - November

Proportion of Gains Realized 0.60 Proportion of Gains Realized 0.45
Proportion of Losses Realized 0.43 Proportion of Losses Realized 0.33
PGR-PLR 0.17 PGR-PLR 0.12
(t-statistic) (14) (t-statistic) (39)

Panel C: Number of shares traded instead of a trade

Panel E: Prior and after the crisis (01 2004 - 02 2007 and 08 2009 - 10 
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measured as total number of gains (losses) realized divided by number of realized gains (losses) and paper 
gains (losses).  

One could argue that our results are affected by the global financial crisis, which struck the 

Estonian stock market from January, 2007 to July, 2009. Crisis marks the time period from 

the highest value of OMX Tallinn (market index) through the collapse until the market picked 

up the positive trend in August of 2009. When we exclude this period the disposition measure 

still stays around 0.12 (Table 1, Panel E). The disposition measure is slightly higher for the 

crisis period (0.18) (Table 1, Panel F). This is intuitive as during the times of crisis people 

tend to realize any possible gains faster, but hold on to their losing stocks with a hope of 

market bouncing back soon. Such explanation is documented empirically by Wang (2010) 

and Szyszka (2010). Wang (2010) empirically finds that the difference of net flow elasticity 

of positive returns before and after the crisis is significant and individual traders experiencing 

the same level of positive returns are more likely to realize them during the time of the crisis.  

 

 
Figure 1. Monthly disposition effect. This figure presents PGR-PLR measure calculated from 
realized and paper gains (losses) each month in the sample period.                                                                 

 

Overconfidence 

When we calculate buy and sell returns for any individual investor who made at least one buy 

and one sell during the period from January, 2004 to October, 2010, we are left with 7566 

individual investors. There are 84,674 buys and 75,758 sells during the period. Odean (1999) 

has more accounts (10,000), but less trades (49,948 buys and 47,535 sells) in the U.S. data. 

Consistently with Odean (1999) we get that the securities bought underperform the securities 

sold even before accounting for transaction costs. This means that investors are not only 
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paying transaction costs, which are equal to 2.2% on average, but also lose money by trading. 

Results are presented in Table 2. Panel A shows that over 100 days’ horizon securities 

investors buy underperform the ones they sell by 0.54% (t-statistic -2.5). Buy minus sell over 

20 days’ horizon underperforms by 0.36% (t-statistic -3.5). Odean (1999) finds a stronger 

effect in the U.S. stock market. Purchases underperform sales by 1.36% over 84 days’ 

horizon.  

We find that 3,468 or 46% of investors have on average 100 days’ buy minus sell returns 

lower than zero, or in other words are overconfident in their ability to pick stocks. Proportion 

of such investors using 20 days’ horizon is similar, equal to 50% or 3,813. For robustness 

check we have also identified investors that are overconfident according to both horizons. 

Number confirms the robustness of the results as 30% of investors are overconfident at both 

horizons, 100 and 20 days’. 

Buy minus sell returns after accounting for transaction costs are the following: -2.88% (t-

statistic -11.1) for 100 days’ horizon, and -2.56% (t-statistic -15.6) for 20 days’ horizon. We 

have also identified the number of investors that are overconfident only in precision of their 

information. This means that their buy minus sell returns before accounting for transaction 

costs are equal to or more than zero, but are negative after transaction costs. There are 192 or 

5% of such investors if we take 100 days’ returns, and 742 or 10% of such investors when we 

take 20 days returns. So, in aggregate there are 51% of overconfident investors (both in 

ability to interpret information and in precision of information) according to 100 days’ 

horizon, and 60 %, when using 20 days’ horizon. 

To check for robustness of the results we partition investors into two groups: first group 

consists of 10% of investors, who trade the most measured by total number of trades, and 

second group consists of the rest 90% of investors. Results are presented in Table 2, Panel B 

and C. The first group consists of 528 individual investors and second of 6,170. We find that 

active investors have slightly negative 100 day returns equal to -0.05%; however they are 

statistically insignificant from 0 (t-statistic -0.1). Interestingly, we even get slightly positive 

20 days’ returns equal to 0.37% (t-statistic 2). After accounting for transaction costs both 

numbers are negative and statistically significant at 10% (-0.75%, t-statistic -1.7, and -0.26%, 

t-statistic -1.44 respectively). Less active investors perform worse: 100 days’ returns are 

equal to -0.58% and 20 days’ to -0.44%. After transaction costs numbers are -3.5% and -4.2% 

respectively. All numbers are statistically significant. Although Odean (1999) gets negative 
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numbers for both groups, he observed the same tendency of higher buy minus sell returns for 

more active investors. He explains that it might be because more active traders are more 

sophisticated so better at security picking, or because they hold securities for shorter horizons 

so 100/20 days’ period following purchase overlaps with part of the 100/20 days’ period after 

sale. 

 

Table 2. Average returns following purchases and sales. Table shows the average buy and sell returns 
after each transaction for individual investors in Estonian stock market from January, 2004 to October, 2010. 
Returns are adjusted by market index. Standard errors are calculated by bootstrapping empirical distribution 
for the differences in returns. 

We also calculate buy minus sell returns for two partitions of our sample (Table 2, Panel D 

and E). First partition is the time period from January, 2004 to February, 2007 and from 

August, 2009 to October, 2010. This period, identified in the same manner as in the 

disposition effect section, captures the time when there was no crisis. Second partition is the 

time period from March, 2007 to July, 2009 and captures the global financial crisis. By doing 

such partitioning we accomplish two goals. First, we perform a robustness check by dividing 

our sample in two halves and checking, whether overconfidence is not just a single 

occurrence that happened sometime by chance. Second, we also test whether the evidence of 

Panel A: All transactions
Number of investors 6,698 7,517 Number of investors 2617

100 trading days 20 trading days 100 trading days

Purchases -3.27% -0.82% Purchases 0.69%
Sales -2.73% -0.46% Sales 2.08%
Difference -0.54% -0.36% Difference -1.39%
(t-tatistic) (-2.49) (-3.50) (t-tatistic) (-3.44)
Difference after 
transaction costs -2.88% -2.56%

Difference after 
transaction costs -2.18%

(t-statistic) (-11.14) (-15.63) (t-statistic) (-5.75)

Panel B: 10% of investors that trade the most Panel E: The crisis period (03 2007 - 07 2009)
Number of investors 528 773 Number of investors 6036

100 trading days 20 trading days 100 trading days

Purchases -3.84% -0.38% Purchases -5.17%
Sales -3.79% -0.75% Sales -4.82%
Difference -0.05% 0.37% Difference -0.35%
(t-tatistic) (-0.12) (2.03) (t-tatistic) (-1.52)
Difference after 
transaction costs -0.75% -0.26%

Difference after 
transaction costs -1.42%

(t-statistic) (-1.70) (-1.44) (t-statistic) (-5.80)

Panel C: 90% of investors that trade the least
Number of investors 6170 6744

100 trading days 20 trading days

Purchases -3.22% -0.87%
Sales -2.63% -0.42%
Difference -0.58% -0.44%
(t-tatistic) (-2.53) (-3.90)
Difference after 
transaction costs -3.06% -2.83%
(t-statistic) (-10.99) (-15.79)

Panel D: Prior and after the crisis (01 2004 - 02 2007 and 08 2009 - 10 
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overconfidence could be driven by the crisis period. We find that overconfidence is evident in 

both periods. Interestingly, investors exhibit less overconfidence during the global financial 

crisis. Buy minus sell returns over 100 days’ horizon before accounting for transaction costs 

are -0.35% (t-statistic -1.52), while it is -1.39% (t-statistic -3.44) for non-crisis period2. It 

might be that investors are less overconfident in their ability to interpret information when the 

market goes down as they do not earn positive returns that they could attribute to their 

investment ability. This is supported by the fact that the number of overconfident investors is 

equal for the two periods (51%). Thus crisis reduces only the magnitude of the 

overconfidence, while the number of investors suffering from this bias stays at the same 

level.  

Likewise Odean (1999), after performing analysis and robustness checks, we conclude that 

individual investors in Estonia are indeed overconfident both in their ability to interpret 

information, and in their precision of information signals. However, the level of 

overconfidence is lower than in the U.S. 

Systematic trading 

We find that individual investors’ buying decisions are highly correlated. Results are 

presented in Table 3. Panel A shows that the correlation of buying intensity across stocks 

among two randomly assigned groups of investors is equal to 44% and statistically significant 

(t-statistic 10). Note that the result is the same to what Jackson (2003) records in Australia. 

He found that correlation among the 9 internet brokerage clients is equal to 44%. Barber, 

Odean, and Zhu (2009) find the correlation to be equal to 73% for discount brokerage clients 

in the U.S. Although authors note that the correlation measure declines when there are less 

accounts in both of the two random groups it could not be the reason why we witness lower 

correlation. Our sample size is comparable to Barber, Odean, and Zhu (2009) as we likewise 

have around 10,000 accounts in each of the random groups.  This implies that investors in 

Estonia are less prone to systematic behaviour than those in the U.S. This result could be 

driven by the fact that there are only 15 stocks in the Estonian stock market and therefore it is 

far less complicated to research and decide on which stocks to trade. So the need to follow 

others is not so significant. On the other hand, Estonian stock market is apparently less liquid 

than the one in the U.S. so people’s choice might be more limited. However, study of the 

                                                      
2 Note that we can compare investors’ performance during crisis and non-crisis periods as returns are market 
adjusted 



Karolis Čekauskas, Vytautas Liatukas   __      ___________________________________ 
 
 

 
 
 
 

26 

relationship between the number of stocks on offer and the level of correlation is out of the 

scope of this research. 

We further check whether the correlation is only contemporaneous or persists over time. 

Table 4 presents the time series correlations of two randomly assigned investor groups. We 

find that systematic trading is highly persistent. Buying intensity of one group in the current 

period can explain considerable fraction of buying decisions of the other group as far as ten 

months in the future and sometimes even more. Correlations diminish over time, but even 

around ten months in the horizon, correlation is 10-20 %. Consistent with the results that the 

contemporaneous correlation is lower in Estonia, we find that the positive correlation persists 

for shorter time span than in the study by Barber, Odean, and Zhu (2009). They find 

consistently positive correlation for up to two years. 

 

Table 3.Correlation of buying intensity among investors. Table 
presents the buying intensity‘s correlation among two randomly 
assigned investor groups. 

Having proven that systematic behaviour in the Estonian stock market is evident we now turn 

to check, whether investors suffering from behavioural biases of disposition effect and 

overconfidence could be the driving force that coordinates traders’ actions in Estonia. We 

address these biases one by one.  

If disposition prone investors would drive systematic trading we would see more coordinated 

trading among the investors that suffer from disposition effect as compared to non-disposition 

traders. Table 3, Panel B shows that there is hardly any difference between the correlation of 

two randomly assigned investor groups in the subset of disposition prone investors versus 

Panel A: All investors

Correlation 43.65%
(t-statistic) (14.33)

Panel B: Disposition prone investors versus the rest 

Disposition investors Other
Correlation 17.10% 17.50%
(t-statistic) (3.97) (4.01)

Panel C: Overconfident investors versus the rest according to 100 days returns

Overconfident investors Other
Correlation 18.09% 11.84%
(t-statistic) (3.88) (2.51)

Panel D: Overconfident investors versus the rest according to 20 days returns

Overconfident investors Other
Correlation 25.72% 13.64%
(t-statistic) (6.18) (3.17)
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non-disposition ones. Correlation for disposition investors is 17.1% (t-statistic 3.97) while it 

is 17.5% (t-statistic 4.01) for non-disposition investors. Therefore, we conclude that 

systematic trading is equally evident for both those, who suffer from disposition effect, and 

those, who do not. Disposition prone investors do not induce more coordinated trading. 

 
Table 4. Contemporaneous and times series correlations. Table 
presents the persistence of buying intensity‘s correlation among the 
randomly assigned investor groups in month t and in month t+L. 

Contrary to the findings of correlation among disposition investors, traders suffering from 

overconfidence seem to be a factor associated with more coordinated trading in the Estonian 

stock market. In Table 3, Panel C and D we see that while the correlation coefficient for two 

randomly assigned groups of overconfident investors, defined as those whose 100 day buy 

minus sell returns are negative before transaction costs, is 18.1% and statistically significant 

(t-statistic 3.88), the level of correlation for those investors that are not overconfident is only 

11.8% (t-statistic 2.51). Even stronger tendency can be spotted with 20 days returns. 

Correlation for overconfident investors is almost two times higher than for the rest of the 

sample. We conclude that investors possessing overconfidence bias are partly responsible for 

the buying intensity’s correlation among the traders in the Estonian stock market. 

One can instantly point out that the figures in the last paragraphs are much lower than those 

found for the whole sample of investors. However, the later calculations were done with 

Horizon (L)
Group1 with 

Group 2
Group2 with 

Group 1 
Group 1 with 

Group1
0 55.84% 55.84% 100.00%
1 47.59% 42.16% 51.21%
2 24.39% 32.42% 39.63%
3 25.71% 41.45% 29.58%
4 28.37% 39.63% 41.31%
5 36.00% 28.23% 34.63%
6 21.57% 25.19% 32.93%
7 24.97% 34.81% 42.66%
8 16.50% 52.10% 40.67%
9 12.89% 21.14% 35.34%
10 6.23% 13.89% 20.54%
11 8.44% 12.84% 20.47%
12 -11.06% 10.61% -3.73%
13 -8.25% 8.85% -3.17%
14 -0.80% 10.72% 13.76%
15 3.01% 20.44% 24.42%
16 -4.30% 8.51% 19.37%
17 -22.89% 7.85% -4.40%
18 -10.25% 5.50% 9.96%
19 -5.55% 10.27% 5.33%
20 -18.55% 2.58% 2.26%
21 -22.26% -6.33% -14.59%
22 -21.88% 0.99% -0.64%
23 -14.52% -4.65% -4.63%
24 -7.99% -0.57% 3.49%
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much smaller subsets of the database due to the fact that non-zero PGR and PLR 

denominators are available for only 2880 accounts, which is barely 15 % of the whole 

sample. Buy minus sell returns could only be calculated for around 30% of the sample. This 

indicates that only a small proportion of investors in Estonia stock market are active traders, 

who also hold at least two stocks at any day when they sell a security. As noted before, 

Barber, Odean, and Zhu (2009) state that the strength of the common component of trading 

declines in relation to the idiosyncratic component as the number of investors in the sample 

decreases. Our dataset supports such explanation. If the sample is randomly divided by half, 

the correlation coefficient of the disposition prone investors’ stock buying intensity further 

diminishes to 5%. Another possible explanation might be that investors, who comprise the 

subsets of the disposition prone and overconfident investors, are those, who trade more often, 

hold more stocks, and thus are classified as more sophisticated investors. In such case they 

might be less susceptible to systematic trading.  

All in all, we find that investor trading in the Estonian stock market is highly correlated and 

persistent. Disposition prone investors trade systematically, but their buying intensity is 

equally as correlated as of non-disposition investors. Overconfident investors’ trading is more 

correlated than non-overconfident investors’ and is partly responsible for the systematic 

trading we witness in the market. 

Stock market impact 

We separately test the impact of the disposition effect and overconfidence on the Estonian 

stock market. We start by examining the disposition effect. We expect that when the number 

of disposition prone investors among the shareholders of a stock increases we should observe 

lower returns. We find such relationship in both specifications, with and without inclusion of 

stock price. The results of the disposition effect regressions are summarized in the Appendix 

1, Table 1. The coefficient estimate of the disposition proxy is negative (-0.4) and statistically 

significant (t-statistic 11). The coefficient is also significant in economic sense. Compared to 

the base case (the net trades by disposition prone investors equal net trades of remaining 

investors), when there are no disposition traders among the buyers the average daily stock 

returns should be higher by 0.4% or 8.7% per month. 

Contrary to the findings of the first specification, other regressions show less statistically 

significant results. Disposition proxy does not have a strong association with stock volatility, 

volume or turnover. The hypothesis that the coefficient on the disposition proxy is equal to 
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zero cannot be rejected at conventional levels of significance. Nevertheless, in line with the 

predictions by the model of Grinblatt and Han (2005) as well as empirical results of 

Goetzmann and Massa (2008) we find negative relationship between the disposition proxy 

and volume, turnover, and volatility. The fact that Goetzman and Massa (2008) were able to 

achieve much higher levels of statistical significance could be attributed to more than 10 

times larger number of observations in their sample (149,000). The statistical significance in 

studies with exceptionally high number of observations is criticized in academia. McCloskey 

and Ziliak (2008) refer to a study with around 80,000 observations and state that "with such 

sample sizes a variable that is economically unimportant will show up as statistically 

significant, through the share force of large N". All in all, we conclude that there is some 

evidence of disposition prone investors impacting stock prices. 

Having identified and quantified disposition effect’s impact on stock prices, we now turn to 

test whether overconfidence has any impact on the Estonian stock market. If we find positive 

effect on volume from lagged returns, this would imply that overconfidence induces more 

trading. Moreover, evidence that stock returns can be predicted using past trading volume 

would put the ultimate connection from overconfidence to stock returns. 

The results from market level VARs with 4 and 10 lags are presented in Appendix 2, Panel A 

and Panel B respectively. Both specifications of market level analysis provide mixed 

evidence about the returns impact on volume. First and fourth lags of market returns are 

consistently negative when using lag length of 4 and 10 weeks, while second and third lags 

are consistently positive. Hardly any of the coefficients on lagged returns are significant at 

least at 10% level. The same holds for the predictive power of market volume on market 

returns. Coefficients on lagged volume are insignificant and with varying signs. 

Since the coefficients recorded in VAR do not capture the full effect of the exogenous 

impulse from one variable to another, we employ the orthogonalized impulse response 

functions (OIRFs) to trace down the impact. OIRFs results are presented in Appendix 3 and 

Appendix 4. Analysis of OIRFs confirms the results of the associated VARs. Neither lagged 

market returns have a statistically significant impact on market volume, nor vice versa (see 

Appendix 3, Panel B and C for details). The largest t-statistic for the response in market 

volume from impulse in market return is achieved for the third lag (1.52). However, it is still 

not enough to reject the hypothesis of no relationship at conventional levels of significance. 

Nevertheless, the coefficient estimate (magnitude of response) is in line with the expectation 
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that higher returns should make investors overconfident and drive higher levels of trading 

volume in subsequent periods. The coefficient is positive and shows that a one standard 

deviation shock in market return should raise the level of volume by 7.5 % in the third 

subsequent week, conditional on no contemporaneous shift in market volume. The 

cumulative impact over a month (4 weeks) is equal to 9.3% and is similar to the findings of 

Statman, Thorley, and Vorkink (2006). Using monthly data they find a statistically significant 

market turnover increase of 8.6% one month after one standard deviation shock in market 

returns. However, direct comparison of these results can be misleading. The economic 

significance is lower for the Estonian stock market, since standard deviation of returns is 10 

times the mean value, compared to 4 times in the U.S. dataset. 

We now turn to investigate, whether market returns can be predicted using past trading 

volume by employing OIRFs. We trace the impact of one standard deviation shock in market 

volume on subsequent market returns. Consistent with the results of Statman, Thorley, and 

Vorkink (2006) we do not find a strongly significant effect (see Appendix 3, Panel C). We 

check the robustness of our findings from OIRF analysis using the lag length of 10 periods in 

line with Statman, Thorley, and Vorkink (2006). We do not observe any material change in 

the relationships and their significance (OIRFs are reported in Appendix 4, Panels A through 

D). 

We also test if the relationships between return and volume hold on the stock level. If we 

found that even after controlling for stock returns there is a positive relation between market 

returns and stock volume, it would contribute to the evidence that positive returns make 

investors overconfident about their investment abilities and induce them to trade more 

actively. This would increase the stock volume independent of the disposition effect as noted 

in the methodology. The evidence of overconfidence impact is mixed. For 9 out of 14 stocks 

in the VAR where dependent variable is stock volume, the coefficient on the first lag of 

market returns is positive. It is statistically significant at 5% in 3 of the 9 stocks with a 

positive coefficient (see Appendix 2, Panel C). Similar relationships can be noticed with 

second and third lag. However, consistently with the findings in market level analysis, the 

impact of market returns on stock volume decline very fast and 13 out of 14 stocks have 

negative coefficients on market return in the fourth period. The results are also statistically 

insignificant for 12 out of 13 of these stocks. 
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We found mixed evidence of returns association with subsequent trading volume both at 

market and stock level. We found a statistically significant short time evidence of market 

returns effect on market volume. This would imply that overconfident investor behaviour 

affects the Estonian stock market. However, as longer effect is not statistically significant, we 

cannot make any strong inferences. What is more, we found no evidence of return 

predictability using volume. We believe that further studies using alternative proxies to 

account for and quantify overconfidence might yield interesting insights and might achieve 

clearer results. 

To summarize, we have shown that the disposition effect has an impact on stock prices. 

However, when testing for overconfidence effect on the Estonian stock market, almost no 

statistically significant relationships were documented. No clear cut conclusions can be 

drawn on that. 

6 Discussion 
After the explicit analysis, we now turn to the discussion of our findings. There are two major 

observations that lead to the implications we draw: first, there is a strong evidence of 

investors suffering from behavioural biases of the disposition effect and overconfidence; 

second, there is aggregated evidence of all three steps of our analysis that challenge the 

underlying propositions of the EMH. We here present the three implications one by one: we 

start by implying that investor sophistication in Estonia could be improved, continue with 

discussion about the need to improve the tools of arbitrage, and eventually question the three 

foundations of the EMH. 

Investors in Estonia suffer from behavioural biases of the disposition effect and 

overconfidence. This yields a reduction in their final wealth. Investors would be better off, if 

they would not hold on to their losing stocks too long and would not sell their winning stocks 

too soon, and if they would not trade so much. Such goal could be achieved by increasing 

investor sophistication. Investor literacy could be improved by educating the youth. Such 

approach is undertaken in many developed countries. For example, in the U.S. there is an 

organization that aims at improving financial literacy of pre-kindergarten to college age 

people (Jump$tart, 2011). The organization provides resources, standards and various 

supports for the financial education. Future investors are raised in the environment, where the 

basic financial knowledge is well spread. Initiative to improve investor sophistication in 

Estonia could start with small steps. Government could include financial courses into the 



Karolis Čekauskas, Vytautas Liatukas   __      ___________________________________ 
 
 

 
 
 
 

32 

school curriculum. Such courses are of course costly, but could offer a solid return on 

investment. If less investors were behaviourally biased, market would have higher 

informational efficiency and prices would better correspond to the fundamentals. This would 

ultimately lead to a better resource allocation. 

Of course, we must consider the argument that noise trading facilitates trade and is essential 

for a stock market to function. Noise traders are investors that are “subject to systematic 

biases” (Shleifer and Summers, 1990). According to the rational expectations equilibrium 

models that analyze price formation, noise trading is an essential part of the process. 

Diversion in the opinion about security value induces investors to take both sides in a trade 

and impound new information into price. Black (1986) states that noise allow markets to 

function and prevent from market failure. Berkman and Koch (2008) empirically test the 

association of noise trader proxy and various market quality measures. Authors find that in 

line with Kyle (1985) model, noise trading is positively associated with volume and depth. 

They also find that noise trading narrows bid-ask spread. Although generally scholars agree 

that some level of noise is needed for the markets to function and too much is harmful to the 

quality of the markets, the optimal level is yet unclear. The proportion of the disposition 

prone and overconfident investors in the Estonian stock market that we document (more than 

60% and more than 50% respectively) is simply too high to be treated as “some noise”. 

Although investors’ education would increase their sophistication and decrease noise trading, 

the market failure from too little trading is highly unlikely. 

A very important mechanism that facilitates market quality is arbitrage. There always are 

sophisticated investors that profit from misvaluations in the stock market. Competition 

between them drives their profits down and further improves informational efficiency. 

However, as noted by Shleifer (2000), there are number of barriers that arbitrageurs face. We 

find some evidence that disposition prone investors have some impact on prices, which 

confirms that arbitrageurs are unable to fully eliminate price impact. For these reasons we 

think that there are grounds for improving the means of arbitrage. For example, it is very 

difficult and practically impossible to short sell stocks in the Estonian stock market. To 

improve the means of short selling a platform for easier stock borrowing could be created. Of 

course, this is only an example and a potential threat of increased market manipulation should 

also be carefully analyzed. 
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We find evidence that investors in Estonian stock market suffer from the disposition effect 

and overconfidence, trade systematically, and behaviourally biased investors have some 

impact on stock prices. This three step evidence corresponds to the underlying propositions of 

the EMH. First, Fama (1970) assume that investors are rational utility maximizing 

individuals. We show that this is very unlikely to be true. Investors are prone to the behaviour 

that is decreasing their wealth in the Estonian stock market. The findings withstand various 

robustness checks and contribute to the behavioural finance literature. It shows that long-

overlooked patterns in decision making found in psychology and sociology help to 

understand financial markets. Second, Fama (1970) argues that even if some investors are 

irrational, their trades are random and cancel each other out. Thus, market prevails 

informationally efficient. Contrary to this proposition, we find that investors’ trading in the 

Estonian stock market is correlated and persistent. It implies that investors trade in the same 

direction at a particular point in time. This could be driven by similar trading strategies or 

patterns. This is supported by our finding that disposition prone and overconfident investors 

trade systematically. Overconfident investors can even be treated as a force that drives 

systematic trading. Third, Fama (1970) insists that even if a group of irrational investors trade 

systematically, there are rational arbitrageurs, who eliminate the price impact and 

informational efficiency prevails. However, we find some empirical evidence that disposition 

prone investors have an impact on prices. Note that we do not claim that arbitrage is 

ineffective; rather, we say that arbitrageurs face barriers and do not eliminate the full price 

impact. We have grounds to believe that even the third argument of the EMH is shaky. This 

is further supported by the strong theoretical arguments of the limits of arbitrage (Shleifer, 

2000). 

The three underlying mechanisms of the EMH are economically very important. Think of 

what happens if none of them holds. Irrational investors trade systematically and affect 

security prices. The information that is impounded into prices is incorrect. Thus, the price of 

a security does not correspond to its fundamental value. This effect is very important in 

several ways. First, investment is distorted. Investors do not know the true value of the 

companies they are investing. Some firms have excessive investment inflows and others 

suffer from shortage. Resources are not allocated to their most efficient uses. Second, smart 

investors can systematically beat the market. If they successfully identify the pattern of 

misvaluation, abnormal profits are possible. Active fund management suddenly makes sense. 

Holding market portfolio, diversifying and constantly rebalancing is unnecessary. Third, 
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there is a point in timing investment as market conditions change. It is plausible that 

misvaluation increases or decreases as time passes. Fourth, Capital Asset Pricing Model 

(CAPM) is not fully accurate as long as it does not incorporate behavioural measures. Fifth, 

price reaction to new information is not necessarily fast and accurate. 

7 Conclusions 
The aim of this paper was to perform a three step analysis according to the three underlying 

mechanisms of the EMH in the Estonian stock market. First step was to identify whether 

investors behave irrationally. By measuring the disposition effect and overconfidence we 

have shown that investors are behaviourally biased. They are more willing to realize gains as 

compared to losses. Furthermore, investors are overconfident and trade too much. Such 

investors’ behaviour decreases their final wealth and expected utility. We took the second 

step to test if investors trade systematically. We found that investors’ trading is indeed highly 

correlated and persistent. We also documented that disposition prone and overconfident 

investors trade systematically and that overconfident investors induce more correlated 

trading. All this evidence supports the fact that irrational choices of investors to buy or sell a 

stock are not random and do not cancel out as predicted by the EMH. Finally, we have 

undertaken the third step in order to analyze, whether investors suffering from behavioural 

biases of disposition effect and overconfidence have an impact on stock prices. We found 

some evidence that disposition prone investors have an impact on prices, while we could not 

draw any conclusions about overconfidence. 

Taking everything together, we see three main implications. First, as investors in the Estonian 

stock market act irrationally we believe there are grounds for improvement. Existing or future 

investors could be educated about the rational financial behaviour. Second, relying on our 

analysis and evidence from other studies we imply that limits to arbitrage is an issue to be 

considered. Better means of arbitrage could improve the quality of the financial markets. 

Third, the above evidence questions the three underlying mechanisms of the EMH. If markets 

are not fully informationally efficient, then prices do not correspond to fundamentals and 

investment is distorted. 

We present possible directions for further studies. A research could investigate the 

disposition effect and overconfidence in the Estonian stock market at the investor level. The 

relationship between these biases and investor characteristics such as age, gender, home or 

foreign would provide useful insights for policy decisions. Whether investors in Estonian 
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stock market are aware of tax-motivated selling is another attractive phenomenon to research. 

While tax-motivated selling is widely documented in other countries, we found very little 

evidence in Estonia. A study about the relationship between the number of stocks on offer 

and correlation of investors trading would tackle the issues of a small set of stocks on the 

market. Finally, a research that undertakes the three step analysis according to the EMH in 

another market using a single dataset would contribute to the evidence found. 
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Appendices 

Appendix 1 

 
 

Table 1. Disposition effect on the stock market. This table summarizes the regression analysis used to estimate 
the relationship of the representation of disposition investors (Disp. Proxy as a variable of interest) and stock 
characteristics (dependent variables): return, turnover, volume, and volatility. The broadest set of control 
variables used in the regression contains: market returns, overall market volume, stock price, stock return, stock 
volume, stock volatility, riskless rate, and company size.  

 

 

 
  

Disp. Proxy
(t-statistic)
Controls
Stock price included as control
Adjusted R^2
N

Disp. Proxy
(t-statistic)
Controls
Stock price included as control
Adjusted R^2
N

Volume
Disp. Proxy
(t-statistic)
Controls
Stock price included as control
Adjusted R^2
N

Volatility
Disp. Proxy
(t-statistic)
Controls
Stock price included as control
Adjusted R^2
N

(-0.39)
-0.005

(-0.39)
-0.005

(-1.52)
-0.019

(-1.68)
-0.020

Turnover

Return
Specification I Specification II

-0.405
(-11.57)

-0.404
(-11.56)

1050710507

1050710507

1050710507

-0.003
(-0.16) (-0.15)

-0.003

Yes Yes
Yes No
0.10 0.07

Yes Yes
Yes No
0.40 0.40

Yes Yes
Yes No
0.61 0.57

Yes

0.23
Yes

Yes
No

0.23
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Appendix 2 
 

 

 

Table 1. Vector auto regressions of returns and volume. (Panel A) presents the market level VAR with 
market volume and market returns as endogenous variables with lag length of 4. Exogenous variables used in 
this specification are market volatility and cross sectional dispersion with lag length of 2. (Panel B) is essentially 
the same estimation as (Panel B) but uses 10 lags for endogenous variables. (Panel C) presents the suppressed 
form of stock level VAR. For simplicity only the stock volume dependent variable regression and coefficients 
with t-statistics on market return lags are reported, as these coefficients are of the primary interest.  In this model 
stock returns are also used as endogenous variable and stock volatility as and exogenous variable with lag length 
of 2. Lag length of endogenous variables is 4. Specifications also include month of the year dummies for 
potential calendar effects.  

MKTvol(t-L) Coefficient 0.5409 0.0701 0.0581 0.2796
(t-statistic) (9.8) (1.12) (0.93) (5.2)

MKTret(t-L) Coefficient -0.5976 1.6059 1.6019 -2.0323
(t-statistic) (-0.48) (1.26) (1.25) (-1.65)

MKTvol(t-L) Coefficient -0.0004 -0.0006 -0.0016 0.0008
(t-statistic) (-0.16) (-0.21) (-0.56) (0.34)

MKTret(t-L) Coefficient 0.1884 0.2110 0.0125 -0.0828
(t-statistic) (3.28) (3.61) (0.21) (-1.47)

MKTvol(t-L) Coefficient 0.4940 0.0096 0.0230 0.1849 0.0379 0.0892 -0.0089 0.1667 -0.1101 0.0797
(t-statistic) (8.52) (0.15) (0.37) (2.95) (0.59) (1.36) (-0.14) (2.56) (-1.7) (1.37)

MKTret(t-L) Coefficient -0.2111 1.7032 2.0569 -1.4325 -0.3769 1.4446 -0.7782 1.5231 -0.6041 0.7913
(t-statistic) (-0.17) (1.36) (1.6) (-1.14) (-0.3) (1.13) (-0.61) (1.16) (-0.48) (0.63)

MKTvol(t-L) Coefficient 0.0004 0.0001 -0.0020 0.0020 -0.0015 -0.0022 -0.0012 0.0038 0.0008 -0.0022
(t-statistic) (0.14) (0.05) (-0.67) (0.69) (-0.51) (-0.71) (-0.4) (1.24) (0.28) (-0.79)

MKTret(t-L) Coefficient 0.2064 0.2288 -0.0309 -0.1028 0.0766 0.0419 -0.0855 0.0654 0.1043 -0.1328
(t-statistic) (3.55) (3.86) (-0.51) (-1.73) (1.28) (0.69) (-1.41) (1.06) (1.75) (-2.24)

L=1

L=1

L=10L=9L=8L=7L=6L=5L=4L=3L=2

Dep var: Market volume

Dep var: Market returns

Dep var: Market volume

Dep var: Market returns

Panel A: Market level VAR with 4 lags of endogenous variables

Panel B: Market level VAR with 10 lags of endogenous variables

L=4L=3L=2

MKTret(t-1) Coefficient -2.9767 -0.9467 3.0469 1.0675 3.5741 3.7928 4.8043 -0.1458 -1.5184 3.4220 5.6452 2.9812 2.4164 -6.3577
(t-statistic) (-1.13) (-0.35) (1.55) (0.47) (2.02) (1.46) (2.35) (-0.05) (-0.58) (1.16) (2.67) (0.94) (0.94) (-0.41)

MKTret(t-2) Coefficient -0.4335 0.1657 -0.3020 1.6249 -0.1548 4.6868 4.5384 6.9121 2.8515 1.1172 1.6879 0.1248 -2.2587 11.2700
(t-statistic) (-0.16) (0.06) (-0.15) (0.7) (-0.08) (1.82) (2.2) (2.57) (1.08) (0.36) (0.76) (0.04) (-0.84) (0.74)

MKTvol(t-3) Coefficient 1.3905 4.3984 1.9488 1.9281 -3.6683 1.1995 -1.4787 4.8017 3.2279 -1.0224 2.3845 1.8915 -1.0978 -7.4642
(t-statistic) (0.53) (1.66) (0.98) (0.85) (-2.04) (0.45) (-0.72) (1.77) (1.14) (-0.33) (1.14) (0.62) (-0.46) (-0.89)

MKTret(t-4) Coefficient -4.2195 -4.6087 -0.5203 1.8709 -1.5198 0.0008 -6.1849 -0.3344 -0.3638 -2.3573 -0.6934 0.7604 -1.4308 5.3627
(t-statistic) (-1.59) (-1.7) (-0.26) (0.84) (-0.85) (0) (-2.99) (-0.12) (-0.14) (-0.81) (-0.32) (0.27) (-0.57) (0.63)

Stock 9 Stock 10 Stock 11 Stock 12 Stock 13 Stock 14

Panel C: Stock level VAR with 4 lags of endogenous variables (other coefficients suppresed for better readability)

Dep var: Stock volume Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 Stock 6 Stock 7 Stock 8
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Appendix 3 
 

 

 

Figure 1. Market level orthogonalized impulse response functions corresponding to VAR with lag length 
for endogenous variables of 4. Cholesky ordering of the endogenous variables: 1. market volume, 2. market 
return. All panels include 95% confidence bands for the response coefficients. (Panel A) presents the subsequent 
market volume response to a one standard deviation shock in market volume. (Panel B) shows the market 
volume response to a shock in market return, conditional on no change in market volume contemporaneously. 
(Panel C) presents the market return response to a shock in market return. (Panel D) shows the response of 
market return to a shock in market volume, conditional on no change in market volume contemporaneously.  
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Figure 1. Continued. 
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Appendix 4 
 

 

 
Figure 1. Market level orthogonalized impulse response functions corresponding to VAR with lag length 
for endogenous variables of 10. Cholesky ordering of the endogenous variables: 1. market volume, 2. market 
return. All panels include 95% confidence bands for the response coefficients. (Panel A) presents the subsequent 
market volume response to a one standard deviation shock in market volume. (Panel B) shows the market 
volume response to a shock in market return, conditional on no change in market volume contemporaneously. 
(Panel C) presents the market return response to a shock in market return. (Panel D) shows the response of 
market return to a shock in market volume, conditional on no change in market volume contemporaneously.  
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Figure 1. Continued.  
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