

Seminar 3: introduction to integral calculus

Exercise 1

Evaluate each indefinite integral.

1.
$$\int x^{7} dx.$$

2.
$$\int x^{3/2} dx.$$

3.
$$\int 6x^{5} dx.$$

4.
$$\int 8x^{3} - 4x^{2} + 5 dx.$$

5.
$$\int \sqrt[3]{x^{4}} dx.$$

6.
$$\int x \sqrt{x} dx.$$

7.
$$\int \sqrt{\sqrt{\sqrt{x}}} dx.$$

Exercise 2

A company's marginal revenue function is $MR = 12\sqrt[3]{x} + 3\sqrt{x}$, where x is the number of units sold. Find the revenue function.

Exercise 3

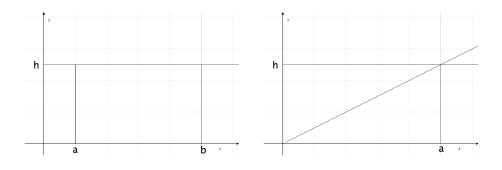
The value of an apartment in the center of Riga increases at the rate of $600\sqrt{t}$ euros per year after t years. Its value now is 200000 euros. What will be the price of this flat in 25 years?

Exercise 4

Evaluate each definite integral.

1.
$$\int_{0}^{2} x^{3} dx$$
.
2. $\int_{-1}^{1} 1 - x^{2} dx$.
3. $\int_{4}^{9} \frac{1}{\sqrt{x}} dx$.
4. $\int_{1}^{2} 6x^{2} + 4x - 1 dx$.

Exercise 5


- Evaluate the indefinite integral $\int x^2 dx$.
- Evaluate the definite integral $\int_0^3 x^2 dx$ by including the constant C.

• Explain why the constant does not matter when we evaluate a definite integral.

Exercise 6

- 1. Show that the area of a rectangle of length (b-a) and height h is h(b-a) using integral calculus.
- 2. Show that the area of a triangle of base a and and height h is $\frac{ha}{2}$ using integral calculus.

Exercise 7

A guitar dealer estimates that the newest model will sell at the rate of $\frac{30}{t^2}$ guitars per month, where t is measured in months and t = 1 corresponds to the beginning of January. Find the number of guitars that will be sold from the beginning of January to the beginning of May.

Exercise 8

Find the area bounded by the two curves $y_1 = \sqrt{x}$ and $y_2 = x^2$.