SSE Riga - Maths Foundation

Nicolas Gavoille

February 12, 2022

1/13 February 12, 2022 1 / 13

Session 2 : Introduction to optimization

- \bullet Last week :
 - What is the rate of change at a point x₀?
 ⇒ derivative

- \bullet Last week :
 - What is the rate of change at a point x₀?
 ⇒ derivative
- Today : how to find the min/max of a function ?

- \bullet Last week :
 - What is the rate of change at a point x₀?
 ⇒ derivative
- Today : how to find the min/max of a function ?
- In economics :
 - What production will maximize profit?
 - Optimal rate of extraction for an oil company?
 - Tax rate maximizing tax revenue?
 - ...

Definition

• At local maximum \hat{x} ,

$$f(\hat{x}) \ge f(x) , \ \hat{x} - \epsilon \le x \le \hat{x} + \epsilon$$

for x in an interval around \hat{x} .

• At a global maximum x^* ,

 $f(x^*) \ge f(x)$ for all x.

Necessary first-order condition

- Suppose that a function f is differentiable in an interval I and that c is an interior point of I
- c is a stationary point if f'(c) = 0
- For x = c to be a maximum or minimum point for f in I, a necessary condition is that it is a **stationary point** for f

Necessary first-order condition

- Suppose that a function f is differentiable in an interval I and that c is an interior point of I
- c is a stationary point if f'(c) = 0
- For x = c to be a maximum or minimum point for f in I, a necessary condition is that it is a **stationary point** for f
- A stationary point may be a an extreme value **OR** an inflection point

• If $f'(x) \ge 0$ for $x \le c$ and $f'(x) \le 0$ for $x \ge c$, then x = c is a maximum point

- If $f'(x) \ge 0$ for $x \le c$ and $f'(x) \le 0$ for $x \ge c$, then x = c is a maximum point
- If $f'(x) \leq 0$ for $x \leq c$ and $f'(x) \geq 0$ for $x \geq c$, then x = c is a minimum point

- If $f'(x) \ge 0$ for $x \le c$ and $f'(x) \le 0$ for $x \ge c$, then x = c is a maximum point
- If $f'(x) \leq 0$ for $x \leq c$ and $f'(x) \geq 0$ for $x \geq c$, then x = c is a minimum point
- Often, this is not convenient to implement with more complicated functions. Is there an alternative?

- If $f'(x) \ge 0$ for $x \le c$ and $f'(x) \le 0$ for $x \ge c$, then x = c is a maximum point
- If $f'(x) \leq 0$ for $x \leq c$ and $f'(x) \geq 0$ for $x \geq c$, then x = c is a minimum point
- Often, this is not convenient to implement with more complicated functions. Is there an alternative?
 ⇒ YES !

- If $f'(x) \ge 0$ for $x \le c$ and $f'(x) \le 0$ for $x \ge c$, then x = c is a maximum point
- If $f'(x) \leq 0$ for $x \leq c$ and $f'(x) \geq 0$ for $x \geq c$, then x = c is a minimum point
- Often, this is not convenient to implement with more complicated functions. Is there an alternative?
 ⇒ YES !
- We first need to introduce higher-order derivatives.

- We have seen that from a function we can calculate a new function, the **derivative** of the original function
- Can we go further?

- We have seen that from a function we can calculate a new function, the **derivative** of the original function
- Can we go further ?
- The derivative of the derivative is the **second derivative**

- We have seen that from a function we can calculate a new function, the **derivative** of the original function
- Can we go further?
- The derivative of the derivative is the second derivative
- Differentiating again gives the third derivative, etc.
- If $f'(x_0)$, $f''(x_0)$, ..., $f^{(n)}(x_0)$ all exist, then we say that f is n times differentiable at x_0

- What does the second derivative mean?
- The first derivative measures the rate of change
- The second derivative tells whether the change is "speeding up" or "speeding down"
- In other words, the second derivative indicates how the rate of change is itself changing

Demographers predict that t years from now the population of the world be :

$$P(t) = 6250 + 160t^{3/4}$$

million people. Find P'(16) and P''(16) and interpret.

Concave and convex functions

Theorem

Suppose that f is continuous in the interval ${\cal I}$ and twice differentiable

- f is convex on $I \iff f''(x) \ge 0$ for all x in I
- f is concave on $I \iff f''(x) \le 0$ for all x in I

Second-derivative test for minimum/maximum

Let f be a twice differentiable function in an interval I. Suppose c is an interior point of I. Then :

- f'(c) = 0 and $f''(c) < 0 \Longrightarrow c$ is a maximum point
- f'(c) = 0 and $f''(c) > 0 \Longrightarrow c$ is a minimum point

•
$$f'(c) = 0$$
 and $f''(c) = 0 \Longrightarrow ?$