SSE Riga - Maths Foundation

Nicolas Gavoille

February 8, 2020

Nicolas Gavoille February 8, 2020 1/20

Math Foundation

- 3 sessions:
 - February 8
 - February 15
 - February 22
- Starts at 10:00
- Lecture + seminar
- Lecture slides + problem sets + solutions available online

Outline

- Session 1: Introduction to differentiation
- Session 2: Introduction to optimization
- Session 3: Introduction to integral calculus

Introduction to differentiation

Nicolas Gavoille February 8, 2020 4 / 20

Definition

A function f is a rule that assigns to each number x in a set a number f(x). The set of all allowable values of x is called the domain, and the set of all values f(x) for x in the domain is called the range

Definition

A function f is a rule that assigns to each number x in a set a number f(x). The set of all allowable values of x is called the domain, and the set of all values f(x) for x in the domain is called the range

In economics:

• $Q_D(P)$: demand function

• U(x): utility function

• $\Pi(Q)$: profit function

...

Nicolas Gavoille February 8, 2020

5/20

How quickly does f(x) change when x slightly increases?

How quickly does f(x) change when x slightly increases?

What is the **rate of change**?

Nicolas Gavoille February 8, 2020 6 / 20

• General form : f(x) = ax + b, with a and b constants

- General form : f(x) = ax + b, with a and b constants
- a is the **slope** of the graph of the function, b is the **intercept**

- General form : f(x) = ax + b, with a and b constants
- \bullet a is the **slope** of the graph of the function, b is the **intercept**
- Let (x_0, y_0) and (x_1, y_1) be arbitrary points on a line l. The slope of the straight line l is :

$$a = \frac{y_1 - y_0}{x_1 - x_0}$$

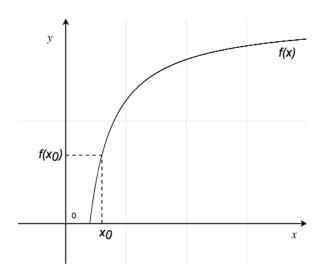
• The slope tells us the change of f(x) when x increases by one unit \Rightarrow rate of change

- General form : f(x) = ax + b, with a and b constants
- \bullet a is the **slope** of the graph of the function, b is the **intercept**
- Let (x_0, y_0) and (x_1, y_1) be arbitrary points on a line l. The slope of the straight line l is :

$$a = \frac{y_1 - y_0}{x_1 - x_0}$$

- The slope tells us the change of f(x) when x increases by one unit \Rightarrow rate of change
- Example: $Q_d(P) = -0.15P + 0.14$ represents the demand function for chocolate, with P in euro and Q in kg.

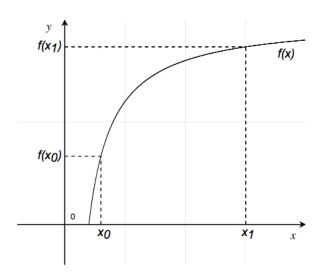
How to measure the rate of change when the function is not linear?

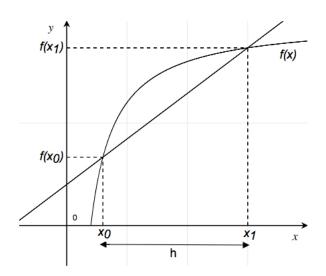


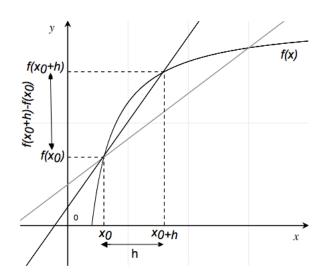
Nicolas Gavoille February 8, 2020

9/20

9/20



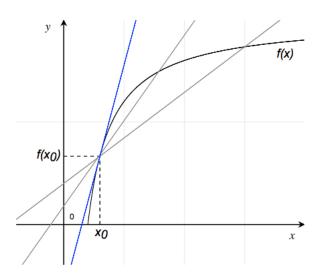


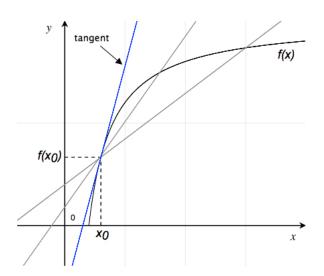


Nicolas Gavoille February 8, 2020

12/20

12 / 20





This is the most important slide of your life

definition

Let $(x_0, f(x_0))$ be a point on the graph of y = f(x). The **derivative** of f at x_0 is the slope of the tangent line to the graph of f at $(x_0, f(x_0))$. We write:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Simple rules for differentiation

• If f(x) = a, then f'(x) = 0

Simple rules for differentiation

- If f(x) = a, then f'(x) = 0
- Multiplicative constant are preserved by differentiation: If $f(x) = a \times g(x)$, then $f'(x) = a \times g'(x)$ (with a a constant)

Simple rules for differentiation

- If f(x) = a, then f'(x) = 0
- Multiplicative constant are preserved by differentiation: If $f(x) = a \times g(x)$, then $f'(x) = a \times g'(x)$ (with a a constant)
- Power rule:

If
$$f(x) = x^a$$
, then $f'(x) = ax^{a-1}$

Differentiation of sums and differences

Consider the two differentiable functions u(x) and v(x)

- If f = u + v, then f' = u' + v'
- If f = u v, then f' = u' v'

Application

The profit of your company is approximated by the following function:

$$f(x) = -x^3 + 40x^2,$$

where x stands for the quantity of units produced.

What is the effect of slightly increasing your production when you already produce 10 units? When you produce 30 units?

Application

$$f(x) = -x^3 + 40x^2 \Rightarrow f'(x) = -3x^2 + 80x,$$

- f'(10) = -300 + 800 = 500
- f'(30) = -2700 + 2400 = -300

Next week: introduction to optimization

20 / 20

Next week: introduction to optimization Thank you for your attention!