Session 3 : Introduction to differentiation
Outline

- Slope of a curve
- Optimization
Part 1:
Slope of a curve
What is the slope at \(x = x_0 \)?
What is the slope at $x = x_0$?
What is the slope at \(x = x_0 \)?
What is the slope at $x = x_0$?
The profit of your company is approximated by the following function:

\[f(x) = -x^3 + 40x^2, \]

where \(x \) stands for the quantity of units produced. What is the effect of slightly increasing your production when you already produce 10 units? When you produce 30 units?
Part 2: Optimization
Application

It costs to an automobile company 8000 euros to produce each car, and fixed costs are 20000 per week. The company’s price function is \(p(x) = 22000 - 70x \), where \(p \) is the price at which exactly \(x \) cars will be sold.

- How many cars should be produced each week?
- For what price should they be sold?
- What is the company’s maximum profit?